Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon
نویسندگان
چکیده
Deposited mineral dust and black carbon are known to reduce the albedo of snow and enhance melt. Here we estimate the contribution of anthropogenic black carbon (BC) to snowmelt in glacier accumulation zones of Central Asia based on in-situ measurements and modelling. Source apportionment suggests that more than 94% of the BC is emitted from mostly regional anthropogenic sources while the remaining contribution comes from natural biomass burning. Even though the annual deposition flux of mineral dust can be up to 20 times higher than that of BC, we find that anthropogenic BC causes the majority (60% on average) of snow darkening. This leads to summer snowmelt rate increases of up to 6.3% (7 cm a-1) on glaciers in three different mountain environments in Kyrgyzstan, based on albedo reduction and snowmelt models.
منابع مشابه
Satellite observations of desert dust-induced Himalayan snow darkening
[1] The optically thick aerosol layer along the southern edge of the Himalaya has been subject of several recent investigations relating to its radiative impacts on the South Asian summer monsoon and regional climate forcing. Prior to the onset of summer monsoon, mineral dust from southwest Asian deserts is transported over the Himalayan foothills on an annual basis. Episodic dust plumes are al...
متن کاملPresent-day climate forcing and response from black carbon in snow
[1] We apply our Snow, Ice, and Aerosol Radiative (SNICAR) model, coupled to a general circulation model with prognostic carbon aerosol transport, to improve understanding of climate forcing and response from black carbon (BC) in snow. Building on two previous studies, we account for interannually varying biomass burning BC emissions, snow aging, and aerosol scavenging by snow meltwater. We ass...
متن کاملRecent increase in black carbon concentrations from a Mt. Everest ice core spanning 18602000 AD
[1] A Mt. Everest ice core spanning 1860–2000 AD and analyzed at high resolution for black carbon (BC) using a Single Particle Soot Photometer (SP2) demonstrates strong seasonality, with peak concentrations during the winter‐ spring, and low concentrations during the summer monsoon season. BC concentrations from 1975–2000 relative to 1860–1975 have increased approximately threefold, indicating ...
متن کاملEnd of the Little Ice Age in the Alps forced by industrial black carbon.
Glaciers in the European Alps began to retreat abruptly from their mid-19th century maximum, marking what appeared to be the end of the Little Ice Age. Alpine temperature and precipitation records suggest that glaciers should instead have continued to grow until circa 1910. Radiative forcing by increasing deposition of industrial black carbon to snow may represent the driver of the abrupt glaci...
متن کاملMissing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas.
The Himalayas are presently holding the largest ice masses outside the polar regions and thus (temporarily) store important freshwater resources. In contrast to the contemplation of glaciers, the role of runoff from snow cover has received comparably little attention in the past, although (i) its contribution is thought to be at least equally or even more important than that of ice melt in many...
متن کامل